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Low Mass-Damping
Vortex-Induced Vibrations
of a Single Cylinder at
Moderate Reynolds Number
The feasibility and accuracy of large eddy simulation is investigated for the case of
three-dimensional unsteady flows past an elastically mounted cylinder at moderate
Reynolds number. Although these flow problems are unconfined, complex wake flow pat-
terns may be observed depending on the elastic properties of the structure. An iterative
procedure is used to solve the structural dynamic equation to be coupled with the
Navier–Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is
involved to deform the computational domain according to the motion of the fluid struc-
ture interface. Numerical simulations of vortex-induced vibrations are performed for a
freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two
low mass-damping conditions. A detailed physical analysis is provided for a wide range
of reduced velocities, and the typical three-branch response of the amplitude behavior
usually reported in the experiments is exhibited and reproduced by numerical simulation.
[DOI: 10.1115/1.4027659]
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1 Introduction

Solving multiphysics problems in the context of large scale indus-
trial applications remains a challenge requiring both the use of
advanced computational methods with high-fidelity turbulence mod-
eling and high performance computing (HPC) resources. Unsteady
flows in very confined areas such as those encountered in steam
exchangers and heat generator tube arrays may feature complex dy-
namical behavior. Each cylinder can lead to Karman vortices and it
is possible to observe a jet issuing between the tubes depending on
the critical size of cylinder spacing and space confinement.

When flexible effects in tube arrays are taken into account,
vortex-induced vibrations (VIV) may deeply affect the dynamical
response of the structure. This is one of the numerous possible
dynamical mechanisms involved in cylinder arrangements. The anal-
ysis of VIV of a single cylinder in an infinite medium without any
confinement is investigated in the present work. The cylinder is con-
strained to move in the lift direction and features under certain cir-
cumstances a kind of synchronization of the vortex shedding

frequency fs with the natural frequency of the system fn. For a given
reduced velocity U*¼U/fnD with U the fluid velocity and D the cyl-
inder section diameter, the amplitude of the cylinder motion and the
nature of the mode emission of the vortex shedding are governed by
the mass-damping parameter m*n with m* the ratio between structure
mass and displaced fluid mass and n the damping ratio.

In the case of low mass-damping, three kinds of amplitude
response can be observed in the lift direction, namely, the initial,
the upper, and the lower branches [1–3]. Low values of the reduced
velocity correspond to the initial branch of the response model. For
this regime, the wake flow exhibits two single vortices shed per
cycle (2S mode emission) and the mean forces are in phase with
the motion of the cylinder. Increasing the reduced velocity gives
rise to the upper branch with high amplitude response. The mode
transition between these branches is hysteretic. The phase shift
between the lift force and the cylinder motion observed during the
lock-in is about 180 deg. Higher values of the reduced velocity lead
to the small amplitude lower branch. For this regime, the vortex
shedding is characterized by a mode with two pairs of vortices shed
per cycle (2P mode emission). The transition with the upper branch
exhibits an intermittent switching.

Numerous numerical works are devoted to the study of the
three-branch response model for low mass-damping problems by
means of computational fluid dynamics [4–6]. However,
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accurately reproducing the upper branch response remains very
tricky as shown by two-dimensional large eddy simulation (LES)
performed by Al-Jamal and Dalton [7] at Reynolds number 8000.
Several attempts are devoted to characterizing the lock-in region
by means of two-dimensional unsteady Reynolds-averaged
Navier–Stokes (2D-URANS) simulations [8,9]. The use of such
methods is very attractive because of their flexibility and robust-
ness, but 2D-URANS approaches of VIV at low mass-damping
usually fails in describing the correct three-branch response model
as observed experimentally for moderate Reynolds numbers. Pan
et al. [9] point out the incapacity of 2D-URANS methods to repro-
duce random disturbances in vortex shedding responsible for the
mode transition, resulting in the absence of the upper branch with
such approaches. Guilmineau and Queutey [8] investigate several
initial conditions for predicting the maximal VIV magnitude
responses as reported experimentally by Khalak and Williamson
[1]. It is shown that the maximal vibration amplitude is repro-
duced under specific increasing velocity initial conditions. How-
ever, the extent to the synchronization region is strongly
underestimated. A relevant numerical model of high amplitude
upper branch regime is described by Lucor et al. [10] by means of
direct numerical simulation (DNS) through a spectral element
approach. The large magnitude response in the lock-in region and
the 2P mode emission are clearly observed. The sensitivity to
Reynolds number in the range from 1000 to 3000 is investigated
in configurations with zero structural damping.

The purpose of the present work deals with the evaluation of
LES for computation of VIV of a circular cylinder in an infinite
area at moderate Reynolds number. A particular attention is paid
to comparison of solutions in the upper branch with available sol-
utions for both zero structural damping and low mass damping.
This article is split into three parts. The formulation and the com-
putational procedure are briefly presented in Sec. 2. Section 3 is
devoted to VIV analysis at Reynolds number 3900 for two low
mass-damping configurations from literature. Finally, computa-
tional times and resources for both static and dynamic flow prob-
lems are discussed. In the context of the present work, all
simulations are carried out at Reynolds number 3900 to enable
comparisons with experimental data of Hover et al. [23]. Compar-
isons with other numerical solutions corresponding to lower val-
ues of Reynolds number are also performed in order to contribute
to the characterization of branch response dependency according
to Reynolds number. A cross analysis of dependency on several
parameters is therefore possible including Reynolds number,
reduced velocity, mass ratio, and Scruton number.

2 Theoretical Background

In the context of a pseudo-Eulerian formulation involving a
moving-grid method for near-moving wall space discretization,
the filtered equations governing the dynamical behavior of an
incompressible flow can be written as follows:

@�ui

@xi
¼ 0

@ui

@t
þ ðui � vgiÞ

@ui

@xj
¼ � 1

q
@�p

@xi
þ � @2ui

@xj@xj
� @sij

@xj

(1)

where vg represents the grid cell velocity, �u and �p the spatially
filtered fluid velocity and pressure, � the kinematic viscosity, and
the subgrid-scale tensor s is modeled by the Smagorinsky model,
which is based on Germano identity [11] and Lilly minimization
[12]. The deviatoric part of the subgrid-scale tensor is given by

sij �
1

3
skkdij ¼ �2�tSij ¼ �2ðCs

�DÞ2 Sk kSij (2)

where Sij represents the filtered strain rate tensor, Sk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
,

and �t denotes the subgrid-scale viscosity, �D is the filter width,
and Cs is the Smagorinsky constant (Cs¼ 0.065). Only hexahedral
computational cells of volume X are considered in the present

work and one uses �D ¼ 2X1=3. The term ð1=3Þskkdij is taken into
account in the pressure gradient.

The governing equations for the fluid are solved using a colo-
cated finite volume approach on unstructured mesh with a frac-
tional time step procedure for fluid pressure velocity coupled
computation through a projection method [13]. Second order cen-
tered schemes in space and time are used. An arbitrary Lagrangian
Eulerian approach is introduced to deal with moving solid boun-
daries. From a mathematical point of view, the introduction of an
arbitrary computational reference system means the introduction
of a grid mesh impacting convective terms in the momentum
equation for incompressible flow, provided that the geometry con-
servation law [14] is ensured for uniform flow with a first order
approximation. Several formulations are possible for the choice of
grid velocity dynamics like transfinite mapping strategy, spring
analogy or linear elasticity approach. In the present work, an ellip-
tic equation is introduced where variable ��k allows cell deforma-
tion [15] to be controlled

r � ð��krðvgÞÞ ¼ 0

vg ¼ Dus

Dt
on Cf=s

vg ¼ 0 on @XfnCf=s

8>><
>>: (3)

The assumption that LES filtering commutes with partial
derivatives is generally considered to be valid on fixed grids with
uniform cell width. This is no longer the case on deforming
unstructured grid, but temporal commutation errors are neglected
in the present work since they are of second order [16].

At fluid–solid interface, two conditions ensuring continuity of
velocity and stress are imposed. The former corresponds to the
kinematic no-slip condition and the latter to the equilibrium con-
dition as follows:

ui ¼
Dus

i

Dt
on Cf=s

rijnj ¼ Tijnj on Cs=f

8<
: (4)

where us represents the displacement of the interface, D=Dt is the
material derivative, and Tij denotes the solid stress tensor. The inter-
faces between solid and fluid domains are Cs=f and Cf=s, respec-
tively. n designates the unit vector normal to the solid domain.

The motion of an elastically mounted rigid circular cylinder
freely oscillating in the cross-flow direction is considered. The
one degree of freedom dynamics equation of the structure reads

m€yþ c _yþ ky ¼ Fy (5)

where y is the displacement in the lift direction, _y the velocity, €y
the acceleration of the cylinder, m, c, and k are structural mass,
damping, and stiffness, respectively, and Fy represents the action
exerted by the fluid in the lift direction. In the framework of
rigid motion theory (similarly for linear elasticity), a lagrangian
formulation is used for describing the time evolution of the solid
kinematics. System remains linear and a Newmark algorithm is
involved for time integration.

From a numerical point of view, the major issue is to compute in
the same time and in a coupled way flow fields and their interactions
with solid displacement. If x designates the physical interfacial fields
to be computed in both fluid and solid domains (x¼ (u, p) and
x¼ (us) on Cf/s and Cs/f, respectively), this unsteady interfacial prob-
lem can be formulated through a nonlinear problem as follows:

S�1
s ðSfðxÞÞ � x ¼ 0 (6)

where Ss and Sf designate the Steklov–Poincar�e operators associ-
ated to the involved discrete formulation. Therefore, an iterative
method is involved to solve the fully coupled fluid solid system
and to look for a solution ensuring continuity conditions through
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the interface at each step of the calculation [15,17–20]. If one con-
siders the coupled problem over a period [TN, TNþ1] of length Dt,
a fixed-point iteration is solved as follows:

xNþ1 ¼ S�1
s ð�SfðxNÞÞ (7)

Consistent predictors and correctors are involved for kinematics
and stress interface fields to ensure stability and convergence of
the solution despite the staggered algorithm. Under-relaxation are
introduced to improve the convergence properties of the iterative
scheme [17]. As far as convergence properties of iterative solver
are concerned, depending on the influence of nonlinear effects,
i.e., depending on the range of the physical parameter values to be
considered, convergence criteria may be changed in order to rein-
force the accuracy of the solution and to tend to converge toward
the solution that would be obtained by a fully implicit procedure.
Moreover, in the configurations described below, the mass ratio is
chosen such that the explicit procedure does not affect numeri-
cally the added mass operator [21]. A projection and a condensa-
tion methods are employed in order to enable a coupling of the
fluid domain interface with a one degree of freedom system
modeling the solid dynamics [22].

3 Vortex-Induced Vibrations of a Circular Cylinder

The main objective of this work is to investigate numerically
the dynamic response of an elastically mounted cylinder
constrained to oscillate transversely to a free stream at low mass-
damping, for a Reynolds number defined by Re¼U0D/� equal
to Re¼ 3900, where U0 is the inlet velocity. The size of the
computational domain is 25D� 20D in the axial and cross-flow
directions and the length upstream the cylinder is equal to 15D.
The spanwise length of the domain is set to 4D. Computations
are performed using 32 grid points along the spanwise
direction. The total number of cells is equal to 2� 106. The time
step is Dt¼ 0.001D/U0. The maximal value of the Courant–
Friedrichs–Lewy number equals 0.8. A detailed analysis of the

VIV is performed for both zero structural damping and low struc-
tural damping n¼ 0.04. Figure 1 displays a representation of the
grid in the full domain and in the vicinity of the moving cylinder.
Cell size is such that the boundary layer smallest structures can be
computed. The O-grid, which extends up to four cylinder diame-
ters, includes 300 points equally distributed in the circumferential
direction. Near-wall refinement corresponds to a dimensionless ra-
dial space grid step of 1 in the boundary layer.

3.1 Case Without Structural Damping. In order to perform
comparisons with solutions of Lucor et al. [10], one computes
the cylinder vibration amplitude and frequency in the case
without any structural damping and with a mass ratio defined by
m*¼ 4 m/(qpD2L) equal to 2. The dynamical response is investi-
gated for three nominal values of the reduced velocity U* defined
by U*¼U0/fnD. Figure 2 displays a comparison of the highest am-
plitude response as a function of reduced velocity for the present
LES at Re¼ 3900 with DNS results obtained by Lucor et al. [10]
for Reynolds number values included in the range from 1000 to
3000. Figure 2 exhibits Amax/D according to reduced velocity in
the present work and in Lucor et al. [10]. Table 1 summarizes the
values of the mean amplitude Amean evaluated from the average of
the peak amplitude of the tenth last periods of oscillation, and also
the maximum Amax, minimum amplitude Amin values and the
standard deviation (STD) of Amean.

According to these results, the upper branch response is repro-
duced numerically for U*¼ 5 by using LES. Moreover, the sensi-
tivity of the vibration magnitude to the Reynolds number is also
retrieved. This sensitivity is pointed out by DNS results obtained
by Lucor et al. using a spectral element formulation [10]. It is con-
firmed here with the proposed LES approach. Using a coarse grid
in the spanwise direction does not seem to affect significantly this
analysis since in the present work, the computational domain
involves 32 grid points in the spanwise direction whereas 128
nodes are employed by Lucor et al. [10]. For each reduced veloc-
ity value to be considered, the agreement between LES and DNS
is acceptable. The decrease in the amplitude response is correctly
predicted as the reduced velocity increases as shown by Fig. 2.
According to Table 1, Amax/D values are in a relative good

Fig. 1 Representation of near-wall space grid refinement

Fig. 2 Dimensionless displacement versus reduced velocity at
Re 5 3900 and m*5 2 with the present LES compared to DNS
solutions of Lucor et al. [10] for Reynolds numbers 1000, 2000,
and 3000

Table 1 Statistical properties of the amplitude response as a
function of the reduced velocity at m* 5 2 and m*n 5 0

U* Amean/D Amax/D Amin/D STD

5 0.795 0.909 0.579 0.096
6 0.694 0.836 0.632 0.062
7 0.532 0.593 0.441 0.043

Fig. 3 Reduced frequency f * versus reduced velocity at
Re 5 3900 and m* 5 2 with the present LES compared to DNS
solutions of Lucor et al. [10] for Reynolds numbers 1000, 2000,
and 3000

Journal of Pressure Vessel Technology OCTOBER 2014, Vol. 136 / 051305-3



agreement with references and the corresponding coefficient of
variation (COV) defined by COV¼ STD/Amean ranges from 8%
to 12%, which is consistent with the present analysis.

Figure 3 displays the reduced frequency f * as a function of the
reduced velocity. Reduced frequency is defined as the ratio
between the frequency of oscillations f0 and the natural frequency
of the system fn. The lock-in phenomenon is reproduced numeri-
cally except at U*¼ 6, where the value of f * is overestimated by
using LES. However, as far as the computational time is con-
cerned, these results tend to show the potential interest of LES for
predicting the upper branch response for VIV without any struc-
tural damping.

The motivation for comparing solutions obtained for several
values of Reynolds number is to show the sensitivity of results to
Reynolds number in terms of vibration magnitude level but not in
terms of lock-in critical reduced velocity. The weak influence of
Reynolds number value on the dynamical and marginal stability
of the mechanical system is thus pointed out. The major patterns
of the system behavior combining flow and solid dynamics are not
changed by the Reynolds number value, except the cylinder
dimensionless vibration magnitude A/D whose maximal limit is
bounded by one under the considered conditions.

3.2 Case With Low Mass-Damping. In what follows, one
considers the numerical parameters used in the experimental study
conducted by Hover et al. [23]. Low mass-damping conditions are
studied for m*n¼ 0.04, where n the reduced damping is defined
by c¼ 2mx0n with x0 the system pulsation. The mass ratio is set
to m*¼ 1. Several reduced velocities from U*¼ 2 to U*¼ 10 are
considered. Figure 4 displays isosurface values at 0.1 bar of pres-
sure for reduced velocity 3, 5, and 9 at Re¼ 3900. Corresponding
flow mode emission in the wake of the cylinder is exhibited. As
expected, a 2S (two-single vortex) mode emission is observed in
the initial branch and a 2P (two-pairs of vortices) mode emission
occurs in the upper and in the lower branches, which is in

accordance with experiment, literature, and theory. This confirms
the ability of LES for describing the near-wake of the moving
cylinder.

Figure 5 shows that the present LES succeeds in computing the
typical branch responses for low mass-damping configurations.
Simulations at U*¼ 2 and U*¼ 3 correspond to the initial small
amplitude response branch. The high amplitude upper branch can
be clearly identified for U* in the range (4–5). The highest ampli-
tude response is close to those observed experimentally [23]. The
reduced velocity range corresponding to the small amplitude
lower branch is approximately defined by U*¼ 5.5. The shape of
the three-branch response model presents a relatively good quanti-
tative agreement with the model obtained from the experimental

Fig. 4 Isosurface of pressure at 0.1 bar with present LES for
reduced velocity equal to 3, 5, and 9 for m* 5 1, m*n 5 0.04, and
Re 5 3900

Fig. 5 Comparison of response amplitude according to
reduced velocity to the experimental data [23] for Re 5 3900,
m* 5 1, and m*n 5 0.04. Mean, minimal, and maximal values of
dimensionless displacement.

Table 2 Statistical properties of the amplitude response as a
function of the reduced velocity at m* 5 1 and m*n 5 0.04

U* Amean/D Amax/D Amin/D STD

2 0.081 0.121 0.052 0.019
3 0.380 0.416 0.352 0.02
4 0.794 0.892 0.663 0.052
5 0.795 1.01 0.639 0.056
5.5 0.721 0.898 0.562 0.107
6 0.715 1.08 0.547 0.149
7 0.661 0.821 0.550 0.072
8 0.510 0.598 0.442 0.045
9 0.501 0.549 0.470 0.027
10 0.488 0.546 0.413 0.045
12 0.191 0.219 0.160 0.021

Fig. 6 Reduced frequency versus reduced velocity at
Reynolds 3900 (m* 5 1 and m*n 5 0.04). Comparison between
present solution and experimental reference.
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data [23]. Table 2 summarizes the value of the mean amplitude
Amean based on the average of the peak amplitude of the tenth last
periods of oscillation. The COV¼ STD/Amean ranges from 6.5%
to 23.45%.

The frequency response of the cylinder is plotted in Fig. 6 as a
function of the reduced velocity. The expected linear growth of
the response is clearly visible below U*¼ 7. However, for reduced
velocity 8, the numerical estimate slightly overestimates experi-
mental results of Hover et al. [23]. As far as the lock-in region
is concerned, simulations above U*¼ 10 predict a reduced
frequency close to one which indicates that the synchronization
regime has been reached. The phase angle between lift force and
displacement is plotted in Fig. 7 for U* ranging from 2 to 10. As
expected, there is no phase shift between force and displacement
as far as the initial and the upper branches are considered [23].
However, the numerical computations exhibit a change in the
phase angle from 0 deg to 180 deg representative for the jump
from the upper to the lower branch [1]. The range of the reduced
velocities U*¼ (5–6) characterizing the transition features a good
agreement with experimental results [23]. The transition between
the initial and the upper branches is characterized by the coher-
ence function relying load and displacement falling to zero as
shown in Fig. 7.

At reduced velocity 8, one can notice a slight underestimation
of the coherence signal. This tends to show a possible lack of

convergence criteria reinforcement in the iterative computational
procedure for modeling fluid solid coupled dynamics in this area
located near lock-in where inertial effects are responsible for the
inversion of energy transfer between flow and cylinder and where
a great accuracy is required for numerical schemes to reproduce
the flow-driven effects on solid dynamics. This apparent slight
numerical weakness is also exhibited in Fig. 6 where the reduced
frequency is slightly greater than 1 at reduced velocity 8. In the
vicinity of lockin, the convergence criteria should be reinforced,
which has not been done in the context of the present work. The
full system is solved by using an iterative solver, and the standard
convergence is assumed to be reached after three subcycling. In
the lock-in area where nonlinearity may be enhanced, ten steps of
subcycling may be required to ensure a better convergence of the
solution. However, because of the significant computational cost
that would be required by additional subcycling, this option has
not been chosen in the present work and the solution has been
evaluated to be acceptable at least qualitatively since it reproduces
with a reasonable accuracy the system behavior in the different
branches and it describes correctly the global trends in the transi-
tion areas between branches. In spite of this numerical effect, one
can conclude that the numerical procedure reproduces the
expected behavior of the system with a good quality. Response
regimes can also be investigated by means of Lissajou figures
plotting lift versus cylinder displacement. A periodogram is used
with overlapping using samples of ten periods of vibrational
response signal or more. Figure 8(a) shows the phase portrait
associated with the transition from the initial to the upper branch
at U*¼ 3. A nearly periodic behavior is observed for this regime
in conjunction with large variations in the lift coefficient. Strongly
different responses are obtained during the transition between the
upper and lower branches as illustrated in Figs. 8(b) and 8(c)
obtained for U*¼ 5 and U*¼ 5.5, respectively. In contrast with
the initial branch, the amplitude of the displacement increases but
fluctuations of the lift coefficient are smaller. The intermittent
switching in the phase plane portrait of the lift versus displace-
ment is reported for U*¼ 5 (Fig. 8(c)). As expected, the
lower branch at U*¼ 10 presents a periodic behavior and the
resulting displacement and lift variation are smaller than those
observed for the other regimes.

Figure 9 displays power spectral densities for reduced velocity
U*¼ 9 at two levels y/D¼ 1 and y/D¼ –1 for four locations
x/D¼ 1, 2, 3, 5 in the wake of the cylinder. Two peaks are

Fig. 7 Coherence and phase angle between lift force and
displacement at Reynolds 3900, m* 5 1, and m*n 5 0.04. Com-
parison between present solution and experimental reference.

Fig. 8 Phase planes obtained for m* 5 1 and m*n 5 0.04 at different reduced veloc-
ities: (a) U * 5 3, (b) U * 5 5, (c) U * 5 5.5, and (d) U * 5 10
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observed showing the presence of a pair of vortices (2P) mode
emission as expected for the range of reduced velocity of interest.

Energy exchanges between fluid and structure systems can be
analyzed by using the lift coefficient in phase with acceleration Cy

[23] through the following dimensionless coefficient Cla:

Cla ¼

2

Ts

ð
Ts

CyðtÞ€yðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ts

ð
Ts

€y2ðtÞdt

s (8)

where Ts is the sampling period. Figure 10 shows that Cla is nega-
tive for both the initial and upper branches defined by U*< 5.5.
According to Hover et al. [23], this means that the corresponding
added mass is positive. Once the lower branch has been
reached, the lift coefficient in phase with acceleration vanishes.
The solution is globally in good agreement with the experimental
data [23].

If one considers the following decomposition of fluid forces:

Ff ¼ �ma€yþ F (9)

where Ff represents the fluid force, ma the added mass, several
models exist to define the component F. In a first approximation,
the component F is y-independent and depends only on time. One
can write

Ff ¼ �ma€yþ 1

2
qUDC0

Lsinð2pUt=DÞ (10)

with

FfðtÞ ¼ �qpD2Cma€y=4 (11)

The added mass coefficient is evaluated by using the following
expression derived by Sarpkaya [25]:

Cma ¼ m�
fvoid

fosc

� �2

�1

 !
(12)

where fvoid and fosc designate, respectively, solid response fre-
quencies without and with fluid.

Figure 11 displays a comparison between the experimental data
from Vikestad et al. [24], the linear model and the results from the
present simulation evaluated by the expression given by Sarpkaya
[25]. The trend is the same as those of linear model and Vikestad
et al. work. The coefficient quickly decreases until it becomes
negative for U*� 5.5. Then, it tends to an asymptotic value
of� 0.5. The added mass coefficient evaluated numerically is
from the opposite sign of lift coefficient in phase with the acceler-
ation [26] and the expected behavior is retrieved. This key
result tends to show the efficiency of the proposed LES to repro-
duce mechanisms responsible for energy exchanges involved by
interaction between flow and moving cylinder boundary and their
dependency to physical parameters such as reduced velocity,
Reynolds number, mass ratio, and structural damping.

4 HPC Resources

Numerical results displayed in the present work are deduced
from HPC calculations carried out using 1024 or 2048 processors
on BlueGene/L and BlueGene/P supercomputers. In terms of
required computational resources for the static case, about 4.5
days are required for 350 physical seconds for the isolated cylin-
der on 1024 processors (Table 3). For the dynamic case, 1024 pro-
cessors about eight days are required for computation of VIV over
a period range covering ten vortex shedding in the lock-in range.
The subcycling procedure involved by the iterative algorithm for

Fig. 9 Power spectral density of cross-flow velocity for reduced velocity U * 5 9 at
two levels y/D 5 1 and y/D 5 21 for four locations x/D 5 1, 2, 3, 5

Fig. 10 Lift coefficient in phase with acceleration for m* 5 1
and m*n 5 0.04 with the present LES for Re 5 3900

Fig. 11 Variation of mass added coefficient versus reduced
velocity for Re 5 3900, m* 5 1, and m*n 5 0.04. Present LES com-
pared to linear model and to reference data.
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fluid-structure coupling is very computational time consuming
(Table 3).

5 Conclusions

Incompressible flow around a freely moving cylinder is simu-
lated using LES for a Reynolds number equal to 3900. A wide
range of reduced velocities is considered in order to characterize
the three-branch response model in the presence of a low mass-
damping parameter. First, the mass ratio is set to 2, and numerical
predictions are compared with DNS in a case with zero structural
damping. Both amplitude displacements and frequencies feature a
quantitative agreement with reference numerical results obtained
for a Reynolds number from 1000 to 3000. Second, the three
distinct branches of the response model are clearly identified for
simulations with a mass-damping equal to 0.04. Both the displace-
ment amplitude on the upper branch and the reduced frequency in
the lock-in region are compared to experimental results. The
phase change between force and displacement corresponding to
the transition from the upper to the lower branch is reproduced
with accuracy. Third, in the context of HPC, information about
computational resources is provided.

Inertial 3D effects responsible for lock-in and described by
added mass terms are clearly reproduced. The present work con-
firms that LES is helpful for better understanding the mechanism
responsible for hysteretic transition between initial and upper
branches. More generally, the proposed computational approach
could be used in the framework of dynamic stability analysis of
mechanical systems like cylinder arrangements whose motion pat-
terns are affected not only by inertial effects but also by noncon-
servative effects described by positive or negative apparent
damping to be evaluated numerically.
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Table 3 HPC performances for static and dynamic configurations

Case
Number of
processors

Number
of cells

CPU time
by iteration

Iteration’s number for
10 vortex shedding

CPU time for 10
vortex shedding

Static 1024 2 M 5.8 9661 56,038 s (15h1/2)
Dynamic 1024 2 M 15 50,000 750,000 s (8d1/2)

(for U*¼ 4, 5, 6) (Subcycling)
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